

BSc/MSci EXAMINATION

PHY-121 Mathematical Techniques I - Part II

Time Allowed: 50 minutes

Date: Thursday 15th November 2007

Time: 12:00

Answer <u>all</u> of part A and <u>two</u> questions from part B. An indicative marking scheme is shown in square brackets [] after each part of a question.

Useful information:

SOLUTIONS

Section A: Questions 1 to 2. Answer <u>all</u> questions.

Note to marker: Any missing constant in an indefinite integral will result in a loss of half of a mark for that question, or part thereof.

1) a) Write down all the terms in the series
$$\sum_{n=0}^{n=4} (n^2 + 1) x^n$$
.
 $\sum_{n=0}^{n=4} (n^2 + 1) x^n = 1 + 2x + 5x^2 + 10x^3 + 17x^4$.

b) Write down the first four terms of a Taylor series expansion for the function f(x) about a point *a*.

$$f(x) = f_a + f'_a(x-a) + \frac{f''_a(x-a)^2}{2!} + \frac{f''_a(x-a)^3}{3!}.$$

c) Write down the first four terms of a Binomial series expansion for the function $f(x) = (1+x)^n$.

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)x^{2}}{2!} + \frac{n(n-1)(n-2)x^{3}}{3!}.$$

d) i)
$$(3+2i)-(3-6i) = 0+8i$$
.
ii) $(1-i)(1+i) = 2$.
iii) $\frac{(1-2i)}{(2+i)} = \frac{(1-2i)(2-i)}{(2-i)} = \frac{1}{5}(2-i-4i+2i^2) = -i$.
iv) $\frac{e^{i\pi}}{3e^{i\frac{\pi}{4}}} = \frac{1}{3}e^{i\pi}e^{-i\frac{\pi}{4}} = \frac{1}{3}e^{i3\pi/4}$.
e) i) Write $(1+2i)$ in the form $re^{i\theta}$.
 $r = \sqrt{1^2 + 2^2} = \sqrt{5}$
 $\tan \theta = 2$
 $\theta = 1.107$ radians (63.43 degrees)
So $(1+2i) = \sqrt{5}e^{1.107i}$.
ii) Write $(1-i)$ in the form $r(\cos \theta + i\sin \theta)$.
 $r = \sqrt{1^2 + 1^2} = \sqrt{2}$
 $\tan \theta = -1$
 $\theta = -\pi/4$ radians (-45 degrees)
So $(1-i) = \sqrt{2}e^{-\pi i/4} = \sqrt{2}(\cos \frac{-\pi}{4} + i\sin \frac{-\pi}{4})$.
iii) Write $\sqrt{3}e^{i\frac{\pi}{6}}$ in the form $(a+bi)$. Draw this on an Argand diagram.
 $\sqrt{3}e^{i\frac{\pi}{6}} = \sqrt{3}(\cos \frac{\pi}{6} + i\sin \frac{\pi}{6}) = 1.5 + \frac{\sqrt{3}}{2}i$.

Solution continues on next page... ©Queen Mary, University of London 2007 2)

Figure 1: Argand diagram corresponding to the complex number in Question 1 part (e) iii.

[10]

a)
$$\int (x^{2}+1)dx = \frac{x^{3}}{3} + x + C.$$

b)
$$\int \frac{-1}{\sqrt{1-x^{2}}}dx = \cos^{-1}x + C.$$

c)
$$\int \sin(2\pi x)dx = \frac{-1}{2\pi}\cos(2\pi x) + C.$$

d)
$$\int e^{i\lambda t}dt = \frac{1}{i\lambda}e^{i\lambda t} + C = -\frac{i}{\lambda}e^{i\lambda t} + C.$$

e)
$$\int \frac{\sin \pi t}{\cos \pi t}dt = -\frac{1}{\pi}\ln|\cos \pi t| + C.$$

f)
$$\int \frac{5x-1}{(x-1)(3x+1)}dx \text{ by partial fractions.}$$

$$\frac{5x-1}{(x-1)(3x+1)} = \frac{A}{(x-1)} + \frac{B}{(3x+1)}$$

$$= \frac{A(3x+1) + B(x-1)}{(x-1)(3x+1)}$$

$$5x-1 = A(3x+1) + B(x-1),$$

so if $x = 1$, $4 = 4A$, so $A = 1$, and
if $x = -1/3$, $\frac{8}{3} = -\frac{4}{3}B$, so $B = 2$. Thus

$$\int \frac{5x-1}{(x-1)(3x+1)}dx = \int \frac{1}{(x-1)} + \frac{2}{(3x+1)}dx$$

$$= \ln|x-1| + \frac{2}{3}\ln|3x+1| + C$$

[10]

Section B: Questions 3 to 5. Answer two questions only.

3) a) Integrate the following function by parts

$$f(x) = xe^{-i\gamma x}$$

where γ is a constant.

$$I = \int x e^{-i\gamma x} dx$$
, so we integrate by parts, taking

$$u = x$$

$$\frac{du}{dx} = 1$$

$$\frac{dv}{dx} = e^{-i\gamma x}$$

$$v = \frac{i}{\gamma} e^{-i\gamma x}$$
So,

$$I = \int x e^{-i\gamma x} dx$$

$$= \frac{ix}{\gamma} e^{-i\gamma x} - \frac{i}{\gamma} \int e^{-i\gamma x} dx$$

$$= \frac{ix}{\gamma} e^{-i\gamma x} - \left(\frac{i}{\gamma}\right)^2 e^{-i\gamma x} + C$$

$$= e^{-i\gamma x} \left(\frac{1}{\gamma^2} + \frac{ix}{\gamma}\right) + C$$

[9]

b) Using the result obtained in part (**a**), calculate the definite integral

$$I = \int_{0}^{\infty} x e^{-2x} dx \text{, so } \gamma = 2/i$$
$$I = \int_{0}^{\infty} x e^{-2x} dx$$
$$= \left[e^{-i\gamma x} \left(\frac{1}{\gamma^{2}} + \frac{ix}{\gamma} \right) \right]_{0}^{\infty}$$
$$= \left[-e^{-2x} \left(\frac{1}{4} + \frac{x}{2} \right) \right]_{0}^{\infty}$$
$$= \left[-e^{-\infty} (0.25 + 0.5 \times \infty) + e^{0} (0.25 + 0) \right]$$
$$= 0.25$$

[6] Total For Question 3 [15] a) Two competing quantum mechanical amplitudes for the process of an initial state *i* decaying into a specific final state *f* are

$$A_1 = ae^{i\phi_1}$$
$$A_2 = be^{i\phi_2}$$

where the total probability amplitude A is given by $A_1 + A_2$. Calculate the total probability for $|i\rangle$ to decay into $|f\rangle$, which is given by AA^* .

$$AA^{*} = (A_{1} + A_{2})(A_{1} + A_{2})^{*}$$

$$= A_{1}A_{1}^{*} + A_{2}A_{2}^{*} + A_{1}A_{2}^{*} + A_{2}A_{1}^{*}$$

$$= a^{2}e^{i(\phi_{1}-\phi_{1})} + b^{2}e^{i(\phi_{2}-\phi_{2})} + abe^{i(\phi_{1}-\phi_{2})} + abe^{i(\phi_{2}-\phi_{1})}$$

$$= a^{2} + b^{2} + abe^{i(\phi_{1}-\phi_{2})} + abe^{i(\phi_{2}-\phi_{1})}$$

$$= a^{2} + b^{2} + ab\left[\cos(\phi_{1} - \phi_{2}) + i\sin(\phi_{1} - \phi_{2})\right] + ab\left[\cos(\phi_{2} - \phi_{1}) + i\sin(\phi_{2} - \phi_{1})\right]$$

$$= a^{2} + b^{2} + 2ab\cos(\phi_{1} - \phi_{2})$$
As $\cos(\theta) = \cos(-\theta)$, and $\sin(\theta) = -\sin(-\theta)$.
[5]

b) Calculate the total probability given that

$$A_1 = \frac{1}{\sqrt{2}} e^{i\pi/4}$$
$$A_2 = \frac{1}{\sqrt{2}} e^{i\theta}$$

Give your answer in terms of real and imaginary parts. Here, the variable θ has a value between 0 and 2π .

$$AA^* = a^2 + b^2 + 2ab\cos(\phi_1 - \phi_2)$$

= $\frac{1}{2} + \frac{1}{2} + \cos\left(\theta - \frac{\pi}{4}\right)$
= $1 + \cos\left(\theta - \frac{\pi}{4}\right)$
= $1 + \cos\left(\frac{\pi}{4} - \theta\right)$ as cosine is an even function.

Where

$$\operatorname{Re}(AA^*) = 1 + \cos\left(\theta - \frac{\pi}{4}\right) = 1 + \cos\left(\frac{\pi}{4} - \theta\right)$$

and

 $\operatorname{Im}(AA^*) = 0$

as the total probability is a real quantity.

Solution continues on next page...

©Queen Mary, University of London 2007

Version 2.0

[4]

c) Sketch the distribution of the real and imaginary parts of the total probability as a function of θ (See Fig. 2).

REAL: The initial value is

$$1 + \cos(\pi/4) = 1 + \sqrt{2}/2 = 1.7071 (4 \text{ d.p.})$$

and the maximum occurs at $\theta = \frac{\pi}{4}$, Prob = 2, and the minimum occurs at

$$\theta = \frac{5\pi}{4}$$
, Prob = 0.

IMAGINARY: Probability is real, so Im(Pr)=0.

Figure 2: The (top) real and (bottom) imaginary parts of the total probability AA^* calculated in Question 4 (b).

[6] Total For Question 4[15]

5) The number of nuclei in a sample of a radioactive material is given by

$$\mathbf{V}(t) = N_0 e^{-\lambda t} \,,$$

where N_0 is the initial number of radioactive nuclei, t is time and λ is the decay constant of the isotope.

a) An experiment is started at a time t = 0 with N₀ radioactive nuclei. Write the first four terms of a Maclaurin series expansion for N(t).

The Maclaurin series for an exponential is

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
so,

$$N(t) \approx N_{0} \left[1 + (-\lambda t) + \frac{(-\lambda t)^{2}}{2!} + \frac{(-\lambda t)^{3}}{3!} \right]$$

$$= N_{0} \left[1 - \lambda t + \frac{(\lambda t)^{2}}{2} - \frac{(\lambda t)^{3}}{6} \right]$$
[5]

b) Using this result, estimate the fraction of nuclei that decay after a time $ln2/\lambda$ which is given by

$$\frac{N(0) - N(\frac{\ln 2}{\lambda})}{N(0)}, \text{ so as } N(0) = N_0,$$

$$\frac{N(0) - N(t)}{N(0)} \approx \frac{N_0 - N_0 \left[1 - \lambda t + \frac{(\lambda t)^2}{2} - \frac{(\lambda t)^3}{6}\right]}{N_0}$$

$$= \lambda t - \frac{(\lambda t)^2}{2} + \frac{(\lambda t)^3}{6}$$

$$= \ln 2 - \frac{(\ln 2)^2}{2} + \frac{(\ln 2)^3}{6}$$

$$= 0.69315 - 0.24023 + 0.05550$$

$$= 0.5084 \text{ (4 d.p.)}$$

c) The radioactive isotope ¹⁵²Eu has a decay constant $\lambda = 1.69 \times 10^{-9} \text{ s}^{-1}$. Using the series expansion obtained above, estimate how many ¹⁵²Eu atoms are remaining after 13 years, if there are 10^6 atoms initially. $\lambda = 1.69 \times 10^{-9}$ $t = 13 \text{ years} = 13 \times 365 \times 24 \times 3600 \text{ (s)} = 409968000 \text{ (s)}$ $\therefore \lambda t = 0.69285$.

[5]

$$N(t) \approx N_0 \left[1 - \lambda t + \frac{(\lambda t)^2}{2} - \frac{(\lambda t)^3}{6} \right]$$

= $N_0 \left(1 - 0.69285 + 0.24002 - 0.05543 \right)$
= $0.4914N_0$
= 4.914×10^5

So approximately 4.914×10^5 atoms remain after 13 years. In fact, the half life of 152 Eu is 13 years.

[5] Total For Question 5 [15]

End of Examination Paper Dr A. Bevan