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May 1, 2009

Mathematical Techniques: Revision Notes

Dr A. J. Bevan,

These notes contain the core of the information conveyed in the lectures. They are not a substitute for
attending the lectures and none of the examples covered are reproduced here. Worked examples of the
techniques described in this note can be found in the tutorial question/solution material provided on the
course web site.

25 Indefinite Integrals

The process of integration is the reverse of differentiation. If we know the derivative of some function f(x)
which is given by f ′(x) = g(x), then we know the integral of g(x) with respect to x up to some constant:

d

dx
[f(x)] = g(x),∫

g(x)dx = h(x) + C. (25.1)

where f(x) = g(x) up to some constant. Here the symbol
∫

means integrate, and this is followed by the
integrand, or function that we want to integrate g(x). The last part of the integral is dx which tells us what
variable to integrate over. Table 1 lists standard derivatives, so we can produce a table of standard integrals
from this (See Table 3).

26 Definite Integrals

In general we can integrate between two values, or limits, in x, say x = a and x = b. If we do this, then we
are summing up strips of height g(x) and width δx over this range of values for x. The solution to a definite
integral is a number

x=b∫
x=a

g(x)dx = [f(x)]x=b
x=a,

= f(b) − f(a),

where we have used the shorthand [f(x)]x=b
x=a to denote f(b) − f(a). Note that there is no constant of

integration for a definite integral.

26.1 Integrals of functions with the form f ′(x)/f(x)

Consider the following integral∫
f ′(x)

f(x)
dx.
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Table 3: Table of standard integrals to complement the derivatives given in Table 1.

Derivative Integral

d
dx (xn) = nxn−1

∫
xndx = xn+1

n+1 + C [forn �= −1]

d
dx(ex) = ex

∫
exdx = ex + C

d
dx (ekx) = kekx

∫
ekxdx = ekx

k + C

d
dx (ax) = ax ln a

∫
axdx = ax

ln a + C

d
dx (lnx) = 1

x

∫
1
xdx = ln |x| + C

d
dx(loga x) = 1

x ln a

∫
1

x ln adx = loga x + C

d
dx(sin x) = cosx

∫
cosxdx = sin x + C

d
dx (cosx) = − sin x

∫
sin xdx = − cosx + C

d
dx (tanx) = sec2 x

∫
sec2 xdx = tanx + C

d
dx (cotx) = −cosec2x

∫
cosec2xdx = − cotx + C

d
dx(sec x) = sec x tan x

∫
secx tan xdx = sec x + C

d
dx(cosecx) = −cosecx cotx − ∫

cosecx cotxdx = cosecx + C

d
dx(sinh x) = coshx

∫
sinh xdx = coshx + C

d
dx(coshx) = sinhx

∫
coshxdx = sinhx + C

d
dx (tanhx) = 1

cosh2 x

∫
1

cosh2 x
dx = tanhx + C

d
dx(sin−1 x) = 1√

1−x2

∫
1√

1−x2
dx = sin−1 x + C

d
dx(cos−1 x) = −1√

1−x2

∫ −1√
1−x2

dx = cos−1 x + C

d
dx(tan−1 x) = 1

1+x2

∫
1

1+x2 dx = tan−1 x + C

d
dx(sinh−1 x) = 1√

1+x2

∫
1√

1+x2
dx = sinh−1 x + C

d
dx(cosh−1 x) = 1√

x2−1

∫
1√

x2−1
dx = cosh−1 x + C

d
dx(tanh−1 x) = 1

1−x2

∫
1

1−x2 dx = tanh−1 x + C

We can try and simplify the problem by making a substitution for f(x) with some new variable u. The next
thing we need to do, is to replace dx in order to integrate in terms of the variable u. So as u = f(x),

du

dx
= f ′(x),

dx =
du

f ′(x)
.

Now we have enough information to re-write the integral∫
f ′(x)

f(x)
dx =

∫
f ′(x)

u
dx =

∫
1

u
du.
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We can see that this integral has a standard form in terms of the variable u, and the solution is just ln |u|+C.
We can substitute for u to get the final solution in terms of x, which is∫

f ′(x)

f(x)
dx = ln |f(x)| + C.

This is a general result and with a little practice one will start to recognise solutions to integrals of this form.

26.2 Integrals of functions with the form f ′(x)f(x)

Consider the following integral∫
f ′(x)f(x)dx,

where we can simply recognize the integrand as the derivative of the function f(x) multiplied by the function.
If we let u = f(x), then

du

dx
= f ′(x),

dx =
du

f ′(x)
,∫

f ′(x)f(x)dx =

∫
f ′(x)u

du

f ′(x)
.

=

∫
udu,

=
u2

2
+ C.

Substituting for u we obtain the solution that∫
f ′(x)f(x)dx =

[f(x)]2

2
+ C. (26.1)

Example: Consider the following integral

I =

∫
2x(1 + x2)dx,

where we can identify f(x) = (1 + x2), and f ′(x) = 2x. Using the rule given by Eq. (26.1), we are able to

write down the solution as I = (1+x2)2

2 + C. This proposed solution can be checked easily by differentiating:

d

dx

(
(1 + x2)2

2
+ C

)
= (1 + x2)

d

dx

(
1 + x2

)
,

= 2x(1 + x2),

which is our integrand as required.

27 Integration By Parts

Consider the following integral

∫
xexdx.
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This is a product of two functions, x and ex. Individually we know how to differentiate, and how to integrate
these two functions. We can use the rule of integration by parts to integrate such a problem. This rule is
derived from the product rule for differentiation given in Eq. (3.1) which we can write as

u
dv

dx
=

d

dx
(uv) − v

du

dx
.

If we integrate both sides of this equation with respect to x we obtain

∫
u

dv

dx
dx = uv −

∫
v
du

dx
dx. (27.1)

which is the rule for integration by parts. In order to use this rule, we have to identify one function with u,
and the second with dv

dx . The function u must be differentiable so that we can calculate du
dx , and we must be

able to integrate dv
dx to calculate v.

When integrating the product u(x)v(x) by parts, if it is possible to isolate u = xn or ex, then this should be
done. When integrating ux = xnex, it is better to take u = xn (as done for the previous example) in order
to solve the integral.

28 Intergration By Parts (contd)

When integrating by parts, sometimes it is possible to end up with the original integral on the RHS of the
equation. For example, consider

I =

∫
e3x sin(x)dx,

If we integrate this by parts once we obtain:

I = − cos(x)e3x + 3

∫
cos(x)e3xdx

which is solved by integrating by parts once more to give

I = − cos(x)e3x + 3

[
sin(x)e3x − 3

∫
cos(x)e3xdx

]
= − cos(x)e3x + 3 sin(x)e3x − 9I.

It is easy to determine I from this last step.

29 Integration Using Partial Fractions

We now turn to the set of integrals of the form

∫
f(x)

g(x)
dx,

where the quotient can be separated into partial fractions. We can re-write such integrals as the integral of
a sum of terms, all of which have the familiar form f ′(x)/f(x) (See Section 26.1) and can be solved easily.
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If we have an integrand of the form

1

(Ax + B)(Cx + D)

we can express this as

1

(Ax + B)(Cx + D)
=

a

Ax + B
+

b

Cx + D
(29.1)

where we need to determine the values of a and b in order to obtain integrands of the form f ′(x)/f(x). To
do this we first recombine the right hand side of Eq. (29.1) as follows

a

Ax + B
+

b

Ax + B
=

a(Cx + D) + b(Ax + B)

(Ax + B)(Cx + D)
.

From this we see that

a(Cx + D) + b(Ax + B) = 1

which can be used in order to determine the values of the constants a and b. Hence we can write∫
1

(Ax + B)(Cx + D)
dx =

∫
a

Ax + B
+

b

Cx + D
dx

=

∫
a

Ax + B
dx +

∫
b

Cx + D
dx

=
a

A
ln |Ax + B| + b

C
ln |Cx + D| + C

Note the following

• A linear factor in the denominator (ax + b) gives a partial fraction A/(ax + b).

• A quadratic factor in the denominator (ax + b)2 gives a partial fraction A/(ax + b) + B/(ax + b)2.

• A cubic factor in the denominator (ax+b)3 gives a partial fraction A/(ax+b)+B/(ax+b)2+C/(ax+b)3.

• Factors of ax2 + bx + c in the denominator give a partial fraction (Ax + B)/(ax2 + bx + c).

30 Notes in integrating trig functions

Use trig identities to simplify the problem; i.e.

cos 2θ = cos2 θ − sin2 θ,

= 2 cos2 θ − 1,

= 1 − 2 sin2 θ.

Other useful identities include

2 sin θ cosφ = sin(θ + φ) + sin(θ − φ),

2 cos θ cosφ = cos(θ + φ) + cos(θ − φ),

2 sin θ sin φ = cos(θ − φ) − cos(θ + φ),
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31 Reduction Formulae

Reduction formulae are formulaic recipes used to solve integrals that would otherwise need a number of
iterations before one arrived at a solution. To illustrate how to calculate a reduction formula, consider the
integral In of y = xnex:

In =

∫
xnexdx.

We are able to integrate y by parts, taking u = xn and dv
dx = ex. So

In = xnex − n

∫
xn−1exdx.

We can recognise the integral
∫

xn−1exdx as something that is very similar to In, and we can call this In−1.
On making this realisation we obtain the reduction formula for In:

In = xnex − nIn−1.

We are now able to use this rule recursively in order to calculate the integral for y for any value of n without
having to explicitly solve any more integrals. We can use this rule to calculate

I1 =

∫
xexdx.

= x1ex − 1I0,

= ex(x − 1) + C,

as required. Reduction formulae can be computed for some integrand u(x)v(x) where u(x) can be expressed
as some function raised to the power n.

32 Applications of Integration

32.1 Area Under A Curve

The area of a thin strip of width δx and height y is δA which is given by δA = yδx. In the limit that
δx → 0 we obtain: dA = ydx, so integrating over x for a function between two points a and b is equivalent
to summing the area under a curve between a and b:

A =

b∫
a

ydx.

Note that this integral is cumulative, if the function becomes negative, then the area computed will be the
sum of the area above and below the y = 0 axis. This is not always what you want to compute.

32.2 Parametric functions

Consider the parametric function

x = f(θ), y = g(θ)
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what is

I =

θ=b∫
θ=a

ydx

=

θ=b∫
θ=a

g(θ)dx

As

dx

dθ
= f ′(θ),

I =

θ=b∫
θ=a

g(θ)f ′(θ)dθ

32.3 Average value (Mean) of a function

The average value of a function is given by:

< y >=
1

b − a

x=b∫
x=a

ydx.

32.4 RMS of a function

The RMS value of a function is given by

RMS(y) =
√

< y2 >,

=

√√√√√ 1

b − a

x=b∫
x=a

y2dx.

32.5 Arc Length

Consider the arc length Δs corresponding to a change Δx along x, with a corresponding change of Δy in
the y direction. Using Pythagoras’ theorem we can obtain the approximation

(Δs)2 = (Δx)2 + (Δy)2,

Δs =
√

(Δx)2 + (Δy)2,
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We can obtain the arc length s between x = a and x = b by taking the limit Δx → 0 and integrating both
sides of this equation. On integrating the left hand side becomes s, so

s =

∫ √
(dx)2 + (dy)2,

=

∫ √
1 +

(
dy

dx

)2

dx. (32.1)

Instead of calculating the arc length by integrating with respect to x, we can equally choose to rearrange
Eq. (32.1) in terms of an integration over y

s =

∫ √
1 +

(
dx

dy

)2

dy. (32.2)

Similarly, for a parametric equation where x = x(θ), and y = y(θ), we can rewrite Eq. (32.1) as an integral
over θ

s =

∫ √(
dx

dθ

)2

+

(
dy

dθ

)2

dθ. (32.3)

32.6 Surface Areas

Consider a lamina given by y(x) between x = a, and x = b. This lamina when revolved about the x-axis
produces a surface with a given area. If we consider a thin strip of width dx, the surface area of this strip
is the arc length of the strip ds multiplied by the circumference of the surface about the x axis 2πy(x), i.e.

dA = 2πy(x)ds.

We can integrate both sides of this equation to obtain the surface area

A = 2π

x=b∫
x=a

y(x)ds,

= 2π

x=b∫
x=a

y(x)

√
1 +

(
dy

dx

)2

dx,

As in Section 32.5, we can rewrite this integral in terms of y, or some parametric variable θ if it helps simplify
the problem.

It is also possible to revolve the lamina y(x) about the y axis, instead of the x axis. If this is done, then the
surface area of a thin strip of the lamina is given by

dA = 2πxds.
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So the area generated is

A = 2π

x=b∫
x=a

xds,

= 2π

x=b∫
x=a

x

√
1 +

(
dy

dx

)2

dx.

32.7 Volumes of Revolution

Consider the lamina in Section 32.6. When this is revolved about the x axis it generates a volume with
elemental area

dV = πy2dx.

If we integrate the lamina we obtain a volume

V = π

x=b∫
x=a

y2dx.

If we revolved the lamina about the y axis instead, the elemental area of volume is

dV = 2πxydx,

so the volume generated is given by

V =

x=b∫
x=a

2πxydx.

If it was more convinient to do so, we could have equally chosen the volume element dV = πx2dy and perform
the integral over y in order to obtain the volume V .

32.8 Centroids of Volumes of Revolution

The point of center of gravity of an object is the point such that there is an equal mass above and below
that point. The centroid of a massless object or shape can be computed an an analogous way as the center
of gravity. We sum up the moments about an axis of an element of the shape, and integrate over the whole
shape in order to compute the centroid positions. It can useful to consider symmetry when computing
centroids of volumes.

We can determine the point of center of gravity of an object of mass M , which in one dimension is given by
x as

∫
xdM =

∫
xdM, (32.4)
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as x is a constant, we can take this out of the integral and rearrange to give

x =

∫
xdM∫
dM

, (32.5)

where the integrals are over the full extent of the object. This integral can be re-written in terms of the
volume by noting that dM = ρdx, where ρ is the density of the object. For a constant density throughout
the object we obtain

x =

∫
xdx∫
dx

. (32.6)

If we consider an extended object in three dimensions we can replace x with the vector r = (x, y, z) where

r =

∫
rdr∫
dr

, (32.7)

which can be written as three separate equations:

x =

∫
xdx∫
dx

, y =

∫
ydy∫
dy

, z =

∫
zdz∫
dz

. (32.8)

If we integrate massless objects in order to find the mid point, that would correspond to the center of mass
in a massive object, we call that point the centroid. We can use Eq. 32.7 to compute the centroid of the thin
strip.

x =

x=x0+Δx∫
x=x0

xdx

∫ x=x0+Δx

x=x0
dx

,

=
[x2/2]x=x0+Δx

x=x0

[x]x=x0+Δx
x=x0

,

= x0 +
Δx

2
.

Similarly for y we find

y =

x=y0∫
x=0

ydy∫ y=y0

y=0 dy
,

=
[y2/2]x=y0

x=0

[y]x=y0

x=0

,

=
y0

2
.

So the centroid position of the thin strip is (x, y) = (x0 + Δx, y0/2). If we consider the limit that the strip
width Δx tends to zero, then the centroid is just (x0, y0/2).
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• If we revolve a laminar about the x axis, then the volume element of this object is given by dV = πy2dx.
So the centroid position (x, y) is given by the equations

y = 0, by symmetry (32.9)

x =

∫
xy2dx∫
y2dx

(32.10)

• If we revolve a laminar about the y axis, then the volume element of this object is given by dV =
2πxydx. So the centroid position (x, y) is given by the equations

y =

∫
xy2dx∫
xydx

(32.11)

x = 0, by symmetry (32.12)

32.9 Moments of Inertia

The moment of inertia dI of a mass element dm rotating about an axis and a distance r from the axis is
given by

dI = r2dm. (32.13)

We can compute the moment of inertia I of an extended mass by integrating both sides of Eq. (32.13) to
obtain

I =

∫
m

r2dm. (32.14)

33 Multiple integrals

The previous lectures have started to deal with integrating over more than one dimension (multiple integration).
These lectures cover aspects of multiple integration in more detail.

When we considered differentiating a function of two or more variables x, y, z, . . . we noted that these
variables are orthogonal (or independent). Using this fact it is possible to differentiate a function with
respect to one of the variables, keeping all of the rest constant. The same approach can be taken with
integrating functions of more than one variable. If we consider z = f(x, y), where x and y are independent,
then we can write the integral of this function over x and y as

I =

∫
y

∫
x

f(x, y)dxdy.

When we write down a multiple integral, the outermost
∫

sign is paired with the outermost variable to
integrate over (dy in this case). Subsequent pairings occur, like layers of an onion, until the innermost layer
is reached (the integral over dx in this case).

We are free to integrate with respect to one of the variables, for example x to obtain an intermediate step

I =

∫
y

g(x, y)dy,
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where in general the functional form of the integrand g still depends on both x and y for an indefinite
integral. If we are performing a definite integral, then the functional form of g will be independent of the
variable(s) that we have integrated over. The final step in solving this problem involves a second integration,
this time over the other variable,

I = h(x, y) + C,

where the general solution of an indefinite integral is also a function of both x and y.

Example: Integrate the following

I =

∫ ∫
x sin(y)dxdy,

=

∫
x2 sin(y)

2
dy,

= −x2 cos(y)

2
+ C.

If the original integral was a definite integral, then the final solution would be a number, whose numerical
value depends on the functional form of f(x, y), and on the limits of integration over both x and y. When
we integrate a function of one variable between two limits, we calculate an area. So when we integrate a
function of two variables, we are calculating a volume.

Example: Calculate the volume bound by the function f(x, y) = xy2 and the x − y plane between x = 0,
x = 1, y = 0, and y = 5. The integral I is

I =

y=5∫
y=0

x=1∫
x=0

xy2dxdy,

=

y=5∫
y=0

[
x2y2

2

]x=1

x=0

dy,

=

y=5∫
y=0

y2

2
dy,

=

[
y3

6

]y=5

y=0

,

=
125

6
.

As we have a convention for pairing up each
∫

with the variable to integrate over, we don’t have to explicitly
write down the variable when writing down the integration limits.

We can continue to solve integrals with increasing numbers of dimensions using the rules outlined above.
For example, we can consider trying to solve the triple integral

I =

∫
z

∫
y

∫
x

f(x, y, z)dxdydz,

where the general solution will also be a function of the variables x, y, and z, up to the integration constant.
If we solve a triple integral that is definite, we will obtain a numerical solution.
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33.1 Calculating the volume bounded by two surfaces

Consider the problem where we have two surfaces, defined by z1 and z2 where

z1(x, y) = f(x, y),

z2(x, y) = g(x, y).

(33.1)

We can calculate the volume bounded between these two surfaces and the planes defined by x = a, x = b,
y = c, and y = d by computing the following integral

V =

g(x,y)∫
z=f(x,y)

y=b∫
y=c

x=b∫
x=a

dxdydz,

=

g(x,y)∫
z=f(x,y)

y=b∫
y=c

x=b∫
x=a

g(x, y) − f(x, y)dxdy.

33.2 Integration in spherical polar coordinates

When we integrate in cartesian coordinates, we compute a volume element dxdydx, and sum up over all
space to compute the integral of all such volume elements for the problem at hand. If we consider spherical
polar coordinates, where 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π, and 0 ≤ θ ≤ π, then the volume element in that coordinate
system basis is r2 sin θdrdθdφ.

NOTE: This is useful for solid state physics, crystallography as well as classical and quantum mechanical
solutions to problems with spherically symmetric potential energies.


