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November 27, 2008

Mathematical Techniques: Lecture 15&16 Revision Notes

Dr A. J. Bevan,

These notes contain the core of the information conveyed in the lectures. They are not a substitute for
attending the lectures and none of the examples covered are reproduced here. Worked examples of the
techniques described in this note can be found in the tutorial question/solution material provided on the
course web site.

32.5 Arc Length

Consider the arc length Δs corresponding to a change Δx along x, with a corresponding change of Δy in
the y direction. Using Pythagoras’ theorem we can obtain the approximation

(Δs)2 = (Δx)2 + (Δy)2,

Δs =
√

(Δx)2 + (Δy)2,

We can obtain the arc length s between x = a and x = b by taking the limit Δx → 0 and integrating both
sides of this equation. On integrating the left hand side becomes s, so

s =

∫ √
(dx)2 + (dy)2,

=

∫ √
1 +

(
dy

dx

)2

dx. (32.1)

Instead of calculating the arc length by integrating with respect to x, we can equally choose to rearrange
Eq. (32.1) in terms of an integration over y

s =

∫ √
1 +

(
dx

dy

)2

dy. (32.2)

Similarly, for a parametric equation where x = x(θ), and y = y(θ), we can rewrite Eq. (32.1) as an integral
over θ

s =

∫ √(
dx

dθ

)2

+

(
dy

dθ

)2

dθ. (32.3)

32.6 Surface Areas

Consider a lamina given by y(x) between x = a, and x = b. This lamina when revolved about the x-axis
produces a surface with a given area. If we consider a thin strip of width dx, the surface area of this strip
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is the arc length of the strip ds multiplied by the circumference of the surface about the x axis 2πy(x), i.e.

dA = 2πy(x)ds.

We can integrate both sides of this equation to obtain the surface area

A = 2π

x=b∫
x=a

y(x)ds,

= 2π

x=b∫
x=a

y(x)

√
1 +

(
dy

dx

)2

dx,

As in Section 32.5, we can rewrite this integral in terms of y, or some parametric variable θ if it helps simplify
the problem.

It is also possible to revolve the lamina y(x) about the y axis, instead of the x axis. If this is done, then the
surface area of a thin strip of the lamina is given by

dA = 2πxds.

So the area generated is

A = 2π

x=b∫
x=a

xds,

= 2π

x=b∫
x=a

x

√
1 +

(
dy

dx

)2

dx.

32.7 Volumes of Revolution

Consider the lamina in Section 32.6. When this is revolved about the x axis it generates a volume with
elemental area

dV = πy2dx.

If we integrate the lamina we obtain a volume

V = π

x=b∫
x=a

y2dx.

If we revolved the lamina about the y axis instead, the elemental area of volume is

dV = 2πxydx,

so the volume generated is given by

V =

x=b∫
x=a

2πxydx.
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If it was more convinient to do so, we could have equally chosen the volume element dV = πx2dy and perform
the integral over y in order to obtain the volume V .

32.8 Centroids of Volumes of Revolution

The point of center of gravity of an object is the point such that there is an equal mass above and below
that point. The centroid of a massless object or shape can be computed an an analogous way as the center
of gravity. We sum up the moments about an axis of an element of the shape, and integrate over the whole
shape in order to compute the centroid positions. It can useful to consider symmetry when computing
centroids of volumes.

We can determine the point of center of gravity of an object of mass M , which in one dimension is given by
x as ∫

xdM =

∫
xdM, (32.4)

as x is a constant, we can take this out of the integral and rearrange to give

x =

∫
xdM∫
dM

, (32.5)

where the integrals are over the full extent of the object. This integral can be re-written in terms of the
volume by noting that dM = ρdx, where ρ is the density of the object. For a constant density throughout
the object we obtain

x =

∫
xdx∫
dx

. (32.6)

If we consider an extended object in three dimensions we can replace x with the vector r = (x, y, z) where

r =

∫
rdr∫
dr

, (32.7)

which can be written as three separate equations:

x =

∫
xdx∫
dx

, y =

∫
ydy∫
dy

, z =

∫
zdz∫
dz

. (32.8)

If we integrate massless objects in order to find the mid point, that would correspond to the center of mass
in a massive object, we call that point the centroid. We can use Eq. 32.7 to compute the centroid of the thin
strip.

x =

x=x0+Δx∫
x=x0

xdx

∫ x=x0+Δx

x=x0
dx

,

=
[x2/2]x=x0+Δx

x=x0

[x]x=x0+Δx
x=x0

,

= x0 +
Δx

2
.
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Similarly for y we find

y =

x=y0∫
x=0

ydy∫ y=y0

y=0
dy

,

=
[y2/2]x=y0

x=0

[y]x=y0

x=0

,

=
y0

2
.

So the centroid position of the thin strip is (x, y) = (x0 + Δx, y0/2). If we consider the limit that the strip
width Δx tends to zero, then the centroid is just (x0, y0/2).

• If we revolve a laminar about the x axis, then the volume element of this object is given by dV = πy2dx.
So the centroid position (x, y) is given by the equations

y = 0, by symmetry (32.9)

x =

∫
xy2dx∫
y2dx

(32.10)

• If we revolve a laminar about the y axis, then the volume element of this object is given by dV =
2πxydx. So the centroid position (x, y) is given by the equations

y =

∫
xy2dx∫
xydx

(32.11)

x = 0, by symmetry (32.12)

32.9 Moments of Inertia

The moment of inertia dI of a mass element dm rotating about an axis and a distance r from the axis is
given by

dI = r2dm. (32.13)

We can compute the moment of inertia I of an extended mass by integrating both sides of Eq. (32.13) to
obtain

I =

∫
m

r2dm. (32.14)


