MT1 Tutorial Exercises: Differentiation I 1

- 1) Differentiate the following functions with respect to x:
 - i) $y = \cos(\pi x)$
 - ii) $y = \sin(\pi x)$
 - iii) $y = \tan(\pi x)$
 - iv) $y = 2 \ln(ax)$
 - $\mathbf{v)} \ y = ae^{bx} + 1$
 - \mathbf{vi}) $y = \beta(x^{\alpha n} + x)^2$
- 2) Differentiate the following functions in parts (i) to (v) with respect to x, and for part (vi) you need to differentiate with respect to t:
 - i) $y = x \cos(\pi x) + \pi$
 - **ii)** $y = x^2 \sin(\pi x)$
 - iii) $y = \ln x \tan(\pi x)$
 - iv) $y = \beta x^2 e^{\pi x}$
 - $\mathbf{v)} \ y = \sin(x)e^{(bx^2 + cx + d)}$
 - vi) $y = (2t^2 + 3t)\sin^{-1}(t)$
- 3) Differentiate the following functions with respect to x:

 - i) $y = \frac{\cos(\pi x)}{3x^2 + 2x}$ ii) $y = \frac{x^3}{\tan(x)}$ iii) $y = \frac{x \ln x}{3x^2 + 2x + 5}$ iv) $y = \frac{\beta x^2}{1 + e^{\pi x}}$ v) $y = \frac{\sin(x)}{e^{bx}}$ vi) $y = \frac{2x^2 + 3x}{\sin^{-1}(x)}$
- 4) Evaluate $\frac{dy}{dx}$ for $y^2 + 2xy + x^3 = 0$ by implicit differentiation.
- 5) Evaluate $\frac{dy}{dx}$ for the parametric equation $x = 3\theta^2 + 2$, $y = \theta + \cos \theta$.
- **6**) Find the equation of the tangent and normal to the curve $x = \theta^3 + 2\theta$, $y = 5\theta \sin(\pi\theta)$ at the point $\theta = \frac{1}{3}$.
- 7) Show that $y = A\sin(\pi x) + B\cos(\pi x)$ is a solution to the equation $\frac{d^2y}{dx^2} = \alpha y$, and determine the value of the constant α .
- 8) Find the angle between the tangents of the curves $y = x^2 + 2$ and y = x + 4at the point of intersection of the curves which has the largest value of y.
- **9**) Evaluate the first and second derivatives of $y = \alpha \sin(\pi x)e^{-\gamma x}$.

2 MT1 Tutorial Exercises: Differentiation II

- 1) Determine the solutions for all values of θ between 0 and 2π for the following
 - i) $\sin^{-1}(\sqrt{3}/2)$

 - ii) $\cos^{-1}(1/\sqrt{2})$ iii) $\tan^{-1}(\sqrt{3})$
- 2) Derive the expression for the derivative of $\cos^{-1}(x)$.
- 3) Differentiate the function $y = x \sin^{-1}(x)$ with respect to x.
- 4) Calculate functional form of the radius of curvature of the function $y = x \frac{2}{x}$. Given this result, calculate the radius of curvature of the function at the point corresponding to x = 1.
- 5) Calculate the radius of curvature of the function $y = 3x^4 x\sin(x)$ at the point corresponding to x = 0.5. [x is in degrees]
- 6) The function $y = e^{-3x} \sin(x)$ describes a damped oscillator. Calculate the radius of curvature of this function at the point corresponding to x = 1. [x is in radians
- 7) Calculate the positions of the turning points of the function $y = x^2 + 2x + 1$, and identify the nature of the turning points. Sketch the functions y, $\frac{dy}{dx}$, and $\frac{d^2y}{dx^2}$, noting the turning points.
- 8) Calculate the positions of the turning points of the function $y = e^{-x}\cos(x)$ between x = 0 and $x = 2\pi$. Identify the nature of the turning points and sketch the functions y, $\frac{dy}{dx}$, and $\frac{d^2y}{dx^2}$ noting the turning points.

3 MT1 Tutorial Exercises: Differentiation III

- 1) Find all first and second partial derivatives of the function $z = x^3 + 3yx^2 7y$.
- **2**) Find all 1^{st} and 2^{nd} partial derivatives of the function $z = Ax^2 \sin(xy)$.
- 3) Find all 1^{st} and 2^{nd} partial derivatives of the function $s = t^3 2x^2t + 7\ln(t)$.
- 4) Calculate the total differential of $z = y \ln x + 3x \sin y$.
- 5) Calculate the first and second partial derivatives with respect to θ and ϕ of the function defined by z=2x+y, where $x=g(\theta,\phi)$, and $y=h(\theta,\phi)$. Then evaluate these derivatives given that $x=\theta^3+3\phi$ and $y=\theta\sin(\phi)$.
- ${f 6})$ The Boltzman probability distribution for the energy spectrum of blackbody radiation at a given temperature T is

$$P(E,T) = \frac{1}{kT}e^{-E/(kT)},$$

where k is Boltzman's constant. Calculate the total differential of P(E,T) and hence $\delta P/P$.

7) The tilt angle ψ of the transverse profile of an positron beam in a storage ring is related to the transverse beam sizes σ_x and σ_y through the following equation:

$$\tan(2\psi) = f(\sigma_x, \sigma_y) = \frac{2\sigma_{xy}}{\sigma_x^2 + \sigma_y^2},$$

where the the x-y coupling parameter σ_{xy} is assumed to be constant for a given point on the ring. Calculate the total differential δf . In the PEP-II storage ring, the beam sizes of the positron ring are $\sigma_x=100\mu m$ and $\sigma_y=5\mu m$. If the measured value of σ_x changes by 1%, σ_y changes by 0.5%, and $\sigma_{xy}=0.1$, calculate δf .

4 MT1 Tutorial Exercises: Series

- 1) Proove that the sum of an arithmetic progression is given by $S_n = \frac{n}{2}(2a + (n-1)d)$.
- **2**) Proove that the sum of a geometric progression is given by $S_n = \frac{a(1-r^n)}{1-r}$.
- 3) Write down all terms of the series $\sum_{i=1}^{5} x(x+1)^{i}$.
- 4) Write down the general form of a Maclaurin series, and calculate the first three non-zero terms in powers of X for the Maclaurin series expansions for the following functions:
 - i) $x \sin(x)$;
 - ii) $e^x \sin(x)$;
 - **iii)** $(x^2+1)e^x$.
- 5) Write down the general form of a Taylor series, and calculate the first four non-zero terms of the taylor series expansions about $x = \pi/3$ for $\cos(x)$.
 - i) Using this expansion, estimate the value of $\cos(\frac{\pi}{4})$;
 - ii) Using this expansion, estimate the value of cos(1.0);
- 6) Write down the first four non-zero terms of the taylor series expansions of
 - i) e^x about x = 1;
 - ii) $e^x \cos(x)$ about $x = \frac{\pi}{2}$;
- 7) Write down the general form of the binomial series expansion. Using the first three terms of a binomial series expansion, estimate the following quantities and compare with the results obtained from your calculator:
 - i) $\sqrt{0.95}$;
 - ii) $\sqrt{1.15}$.

MT1 Tutorial Exercises: Complex Numbers 5

- 1) Simplify the following:

 - i) i^{2} , ii) i^{5} ,
 - iii) $3i^{11}$
 - **iv**) i^{13} .
- **2**) Evaluate the following in the form a + bi.
 - i) (2+3i)+(5+7i),
 - ii) (2+3i)-(5+7i),
 - iii) (2+3i)(2-3i),
 - iv) $(3-5i)^3$, v) $\frac{3-5i}{-1-2i}$.
- 3) For each part of question 2, draw the complex numbers on an argand diagram, and express in the form ae^{ib} .
- 4) Evaluate (-2 5i)(3 2i).
- **5**) Evaluate $(\frac{1}{2} \frac{1}{\sqrt{3}}i)(-\frac{1}{2} + \frac{1}{\sqrt{2}}i)$.
- **6**) Evaluate (6-2i)(1-1i)(2-2i).
- **7**) Evaluate $\frac{1}{i} \frac{6-2i}{1-1i}$.
- 8) Express $z = e^{2+i\pi/4}$ in the form a + bi.
- 9) Express 3-2i in polar form.
- 10) Find the square roots of $z = 4(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$, and draw these on an argand diagram. The principle root is the one closest to the real axis. Identify the principle square root of z.
- 11) If $z = 3(\cos \pi/6 + i \sin \pi/6)$, calculate z^4 in polar form.
- 12) Find the five roots of $z^{\frac{1}{5}}$, given that z=3-2i, and draw these on an argand diagram indicating the principle root.
- 13) Find the values of x and y that satisfy the equation x(x+y) + x yi =-1 - 3i

14) Two competing probability amplitudes $(A_1 \text{ and } A_2)$ for a quantum mechanical transition from some initial state $|i\rangle$ to some final state $|f\rangle$ are given by

$$A_1 = ae^{i\phi_1},$$

$$A_2 = be^{i\phi_2},$$

and the total probability amplitude (A) for the process is given by the sum of A_1 and A_2 . Given that the probability for a process with probability amplitude A is given by AA^* , calculate the probability for the transition from |i> to |f>. From your result, calculate the probability for this transition under the assumption that $\phi_1=\phi_2$.

6 MT1 Tutorial Exercises: Integration I

- 1) Evaluate the following integrals:
 - i) $\int \cos(\pi x) dx$;
 - ii) $\int \alpha \sin(\pi x) dx$;

 - iii) $\int \pi \sec^2(\pi x) dx$; iv) $\int \frac{2}{x} dx$; v) $\int ae^{bx} + 1 dx$; vi) $\beta \int (x^{\alpha n} + x)^2 dx$.
- 2) Evaluate the following integrals:

 - Evaluate the following into i) $\int \sin(x) \cos(x) dx$; ii) $\int \alpha \frac{\sin(\pi x)}{\cos(\pi x)} dx$; iii) $\int \frac{3x^2 + 4x 9}{x^3 + 2x^2 9x} dx$; iv) $\int (4x + 3)e^{(2x^2 + 3x)} dx$; v) $\int \frac{abe^{bx}}{ae^{bx} + 1} dx$; vi) $\int \frac{\alpha nx^{\alpha n 1} + \beta}{x^{\alpha n} + \beta x} dx$.
- **3**) Evaluate the following integrals:
 - i) $\int \frac{3}{(x-1)(x+4)} dx$; ii) $\int \frac{1}{x^2-2x-3} dx$;
- 4) Integrate the following by parts:
 - i) $\int e^x \sin(x) dx$;
 - ii) $\int x \cos(x) dx$;
 - iii) $\int x \sec^2(x) dx$.
- 5) The Boltzman probability distribution for the energy spectrum of blackbody radiation at a constant temperature T is given by

$$P(E) = \frac{1}{kT}e^{-E/(kT)},$$

where k is Boltzman's constant. Calculate the average energy of the distribution which is given by

$$\langle E \rangle = \frac{\int_0^\infty EP(E) dE}{\int_0^\infty P(E) dE}.$$

7 MT1 Tutorial Exercises: Integration II

- 1) Determine the reduction formula for $I_n = \int x^n \sin(\gamma x) dx$. Hence evaluate $I_3 = \int x^3 \sin x dx$.
- 2) Determine the reduction formula for $I_n=\int x^n e^{i\gamma x} dx$. Hence evaluate $I_2=\int x^2 e^{i\gamma x} dx$.
- 3) Evaluate the integral $\int \sin^3 x dx$.
- 4) Evaluate the integral $\int \cos^4 x dx$.
- 5) Evaluate the integral $\int_{\theta=0}^{\theta=\pi/2}y\mathrm{d}x$, where $x=\sin\theta$ and $y=0.5\cos\theta$
- **6**) Evaluate the integral $\int_{\theta=0}^{\theta=\pi} y dx$, where $x=a^{\theta}$ and $y=1/(a^{\theta} \ln a)$, where a is a constant.
- 7) Calculate the area bounded by the curve $y = \frac{1}{x} + 3\sin x$ and the x axis between x = 1 and x = 2.
- 8) Calculate the area bounded by the x axis and the curve $y = e^{-x/\pi} \sin(x)$ between x = 0 and $x = 2\pi$.
- 9) Calculate the RMS voltage of an AC power supply with $V(t) = V_0 \cos(\omega t)$, between $t = -\pi/\omega$, and $t = \pi/\omega$. Here the constant ω is the frequency of oscillation, and the constant V_0 is the peak voltage.

8 MT1 Tutorial Exercises: Integration III

1) A charged particle produced in e^+e^- annihilation is trapped in the magnetic field of an experiment. The new particle moves with a helical trajectory according to the following equations

```
x = r \cos t,<br/>y = r \sin t,<br/>z = ct
```

where the constant r is the radius of the path in the x-y plane, c is a constant corresponding to the rate at which the particle moves along the z axis, and t is time in seconds. Calculate the distance traveled by the charged particle from t=0 to $t=\pi$ seconds.

- 2) Calculate the moment of inertia of a strip of uniform density ρ of length L (in the x direction) and height h (along y) about the y axis.
- 3) The lamina defined by the function $y = x \sin(x)$ bounded by the x axis between x = 0 and $x = \pi$ is rotated about the y axis to generate a volume. Calculate this volume.
- 4) The lamina defined by the function y = ax+1 bounded by the x axis between x = 0 and x = 1 is rotated about the x axis to generate a volume. Calculate this volume, and the corresponding centroid positions \overline{x} and \overline{y} .
- 5) Calculate the surface area generated when the laminar bounded by the x axis, y = 2x + 1, x = 0, and $x = \pi$ is rotated about the y axis.
- **6**) Calculate the surface area generated by y from Question (4), when rotated about the x axis.
- 7) Calculate the centroid position $(\overline{x}, \overline{y})$ of the volume generated when the laminar defined by $\sin(x)$, the x axis, x = 0 and $x = \pi$ is rotated about the y axis.

9 MT1 Tutorial Exercises: Integration IV

- 1) Calculate the integral $\int_{x=a}^{b} \int_{y=c}^{d} 3x^2 + 2y \, dy dx$.
- 2) Calculate the integral $\int_{r=a}^{b} \int_{\theta=c}^{d} \int_{\phi=e}^{f} r^{2}(\theta+r\phi) \,d\phi d\theta dr$.
- 3) The volume element of a cuboid is given by dV = dxdydz. By suitable integration, calculate the volume of a cuboid of dimension $x \times y \times z = 1 \times 2 \times 3$.
- 4) By suitable integration, calculate the volume of a sphere of radius R, with volume element $dV = r^2 \sin \theta d\phi d\theta dr$.
- 5) A solid is formed by the surface $z = y \sin(\pi y) + x \cos(\pi x)$, the x y plane and the planes x = 0, x = 1, y = 0, y = 1. By suitable integration, determine the volume of the solid in $units^3$.
- **6**) A solid is enclosed by the two surfaces z = x + y and $z = x^2 + 3xy$, the planes x = 0. x = 1, y = 0, and y = 1. By suitable integration, determine the volume of the solid in $units^3$.
- 7) A solid is enclosed by the surface $z = \pi^2 \cos(\pi x) \cos(\pi y)$, the xy plane, and the planes x = 0, x = 0.5, y = 0, and y = 0.5. By suitable integration, determine the volume of the solid in $units^3$.
- 8) A solid is formed by the surface $z = ye^{-x}$, the x y plane and the planes x = 0, x = 1, y = 0, y = 1. By suitable integration, determine the volume of the solid in $units^3$.

10 MT1 Tutorial Exercises: Fourier Series/Integrals

1) Consider the following function describing a periodic square wave potential

$$y(t) = 1, 0 \le t + nT \le \frac{T}{2}$$

= 0, elsewhere.

Determine the Fourier series corresponding to this function.

- 2) Calculate the fourier transforms of the functions (a) $y=\sin(2\pi t/T)$ and (b) $y=e^{-x^2}$.
- 3) Calculate $\int_{-\infty}^{\infty} \delta(x-1) f(x) dx$, where $f(x) = 3x \sin(\pi x/2)$.